Results and Publications

HYDROCARB effectively started with first field campaigns in November 2014. Since then, the team has spent many months in the field to collect data, and conducted many experiments and analyses in the lab.  

Results in brief can be read here. All HYDROCARB publications with fulltext can be found here. Below is a list of a few highlights:

Isidorova, A. (2020). The origin and fate of sediment organic carbon in tropical reservoirs. Doctoral dissertation. Uppsala: Acta Universitatis Upsaliensis. Link to Uppsala University DiVA.

The first quantification of the variability of CH4 ebullition across different scales of time, as well as space: Linkhorst, A., C. Hiller, T. Delsontro, G. M. Azevedo, N. Barros, R. Mendonça, and S. Sobek (2020), Comparing methane ebullition variability across space and time in a Brazilian reservoir, Limnol. Oceanogr., doi:10.1002/lno.11410.

The first model predicting CH4 production from sediment properties: Isidorova, A., C. Grasset, R. Mendonça, and S. Sobek (2019), Methane formation in tropical reservoirs predicted from sediment age and nitrogen, Scientific Reports, 9, 11017, doi:10.1038/s41598-019-47346-7.

Linkhorst, A. (2019). Greenhouse gas emission from tropical reservoirs: Spatial and temporal dynamics. (Doctoral dissertation). Uppsala: Acta Universitatis Upsaliensis. Link to Uppsala University Library DiVA

Burial of terrestrial organic carbon is particularly efficient in reservoir sediments: Isidorova, A.; Mendonça, R.; Sobek, S. Reduced mineralization of terrestrial OC in anoxic sediment suggests enhanced burial efficiency in reservoirs compared to other depositional environments J. Geophys. Res. Biogeosci. 2019, 124, 678-688, doi:10.1029/2018jg004823

Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas:
Kosten, S.; van den Berg, S.; Mendonça, R.; Paranaíba, J. R.; Roland, F.; Sobek, S.; Van Den Hoek, J.; Barros, N. Inland Waters 2018, 8, 329-340, doi:10.1080/20442041.2018.1483126

CH4 production in sediments is very strongly driven by fresh organic matter input, particularly from phytoplankton and some aquatic plants: Grasset, C., R. Mendonça, G. Villamor Saucedo, D. Bastviken, F. Roland, and S. Sobek. 2018. Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnology and Oceanography, doi: 10.1002/lno.10786

The currently most comprehensive global-scale, and regionally-resolved estimate of carbon burial in inland waters shows that 40% of the inland water carbon burial takes place in reservoirs: Mendonça, R., R. A. Müller, D. Clow, C. Verpoorter, P. Raymond, L. J. Tranvik, and S. Sobek. 2017. Organic carbon burial in global lakes and reservoirs, Nature Communications, 8, 1694, doi:10.1038/s41467-017-01789-6
Headline publication summary 

Reservoir CH4 and CO2 emission via diffusion varies very strongly in space. A few measurements close to the dam will not be representative:  Paranaiba, J. R., N. Barros, R. Mendonca, A. Linkhorst, A. Isidorova, F. Roland, R. Almeida, and S. Sobek. 2017. Spatially resolved measurements of CO2 and CH4 concentration and gas exchange velocity highly influence carbon emission estimates of reservoirs, Environmental Science & Technology, doi:10.1021/acs.est.7b05138

A new conceptual framework for accounting of reservoir CO2 and CH4 emission, and carbon burial: Prairie, Y.T., J. Alm, J. Beaulieu, N. Barros, T. Battin, J.J. Cole, P. del Giorgio, T.S. DelSontro, F. Guérin, A. Harby, S. Mercier-Blais, D. Serça, S. Sobek, and D. Vachon. 2017. Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems, doi:10.1007/s10021-017-0198-9

The first quantification of the whole-basin carbon burial efficiency in a tropical reservoir: Mendonça, R., S. Kosten, S. Sobek, S. J. Cardoso, M. P. Figueiredo-Barros, C. H. D. Estrada, and F. Roland. 2016. Organic carbon burial efficiency in a subtropical hydroelectric reservoir, Biogeosciences, 13(11), 3331-3342, doi:10.5194/bg-13-3331-2016